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The vector complex Ginzburg-Landau equation is an amplitude equation appropriate for describing insta-
bilities in oscillatory media when the order parameter is a vector fieldsfor example, laser light or two-
component Bose condensated. It is known that this equation presents a variety of phase singularities or topo-
logical defects. We study the parameters that characterize the different kinds of defects and show that the
results are useful for a better understanding of the system dynamics.
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I. INTRODUCTION

Spatially extended nonlinear dynamical systems present a
great variety of behaviors including pattern formation, self-
organization, and spatiotemporal chaosf1g. Many of them
also display states with localized objects with some kind of
particlelike behaviorf2g. Complex patterns of nonlinear sys-
tems can sometimes be understood in terms of these particle-
like objects.

Nonlinear optical cavities provide many examples of pat-
terns with localized structures. They appear in the plane
transverse to light propagation and can take the form of de-
fects, vortices, or solitonssbright or darkd. They have been
observed or predicted in lasersf3g, photorefractive materials
f4g, lasers or driven optical cavities with saturable absorbers
f5g, semiconductorsf6g, optical bistabilityf7g, and second-
order nonlinear optical oscillatorsf8g. Usually, the math-
ematical description of these optical systems is done in terms
of a scalar field, since the polarization degree of freedom is
considered to be fixed either by material anisotropies or by
experimental arrangement. However, if the polarization of
the light is not fixed, the vector nature of the electromagnetic
field leads to new and interesting phenomenaf9g.

The complex Ginzburg-LandausCGLd equation is the ge-
neric amplitude equation model that describes slow modula-
tions in the oscillations of spatially coupled oscillators close
to a Hopf bifurcationf1,10g. The vector complex Ginzburg-
LandausVCGLd equation has been derived in a variety of
contexts, e.g., in the interaction of counterpropagating waves
f11g or when the order parameter is of vectorial character,
such as the electric field in large aperture lasersf12,13g. In
the appropriate range of parameters, the VCGL equation also
describes a two-component Bose condensatef14g.

Different kinds of defectsf15–20g are present in the two-
dimensionals2Dd VCGL equation. In this paper we consider
quantities, such as size, frequency, or wave number of the
wave emitted by the defect core, which characterize the dif-
ferent kinds of defects. We study the behavior of these quan-
tities as functions of the parameters of the equation.

II. THE EQUATION

The VCGL equation can be written as

]A±

]t
= s1 + iad¹2A± − s1 + ibdsuA±u2 + guA7u2 − 1dA±.

s1d

fThe scalingA±→A± exps−ibtd was used with respect to an-
other version used in, e.g., Refs.f15–20g, in order to have a
nonoscillating homogeneous solution.g In the context of la-
sers,A± represent the circularly polarized right and left com-
ponents,a represents the strength of diffraction,b is related
to the frequency detuning,g is the coupling parameter re-
lated to decay constants, and¹2 is the 2D transverse Laplac-
ian. The definition of the equation parameters in terms of
physical quantities can be found in Ref.f13g.

The coupling parameterg should satisfy the conditiong
.−1 for the system to converge to a finite solution. We will
consider that the condition 1+ab.0 sBenjamin-Feir stabil-
ity criteriond is satisfied, which means that there are always
some plane waves that are stable against long wavelength
perturbations. The family of plane wave solutions has the
form, A±=Q±e−isk±.r−v±t+f0±d. If g.1, the stable plane wave
solution is circularly polarized. If −1,g,1, the stable plane
wave solution is, in general, elliptically polarized, and, if
k+=k−=k, we have a linearly polarized solutionf20g.

Starting from random initial conditions, even if the con-
dition 1+ab.0 is satisfied, the system usually does not
evolve to a plane wave due to the presence of phase singu-
larities or defects: points where the phase of the complex
field, A+ or A− sor bothd, is not defined and the amplitude is
zero. A spiral wave develops around each defect that, far
from the defect core, approaches a plane wave.

Defects can be classified in two groups: vector and scalar
defects. Vector defects are points where the two components,
A+ and A−, vanish. Scalar defects are points at which only
one of the two fields,A+ or A−, vanish. The following ansatz
is used to describe the field around a defect in a stationary
state, in polar coordinates with the origin at the defect core,

A±sr,ud = R±srdein±u+ic±srd+iv±t. s2d

where n± is the topological charge of the singularity that
necessarily takes integer values. Only defects with charges
n= ±1 have been found in the scalar or vector Ginzburg-
Landau equation. Defects with larger values ofunu are un-
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stable and detach in defects with smaller charge.sDefects
with unu=2 have been reported for the vector Swift-
Hohenberg equationf21g.d If g.1, vector defects are not
topologically allowed, since the stable homogeneous states
are such that one of the two field components vanishes in
large areas, not just at points.

In Eq. s2d, v± is the rotation frequency of the spiral wave.
For r →`, c±srd=k±r, where the spiral wave numberk± far
from the defect core is the one that corresponds to a plane
wave and is given byk±

2=v± / sb−ad.
The amplitudes ofA+ andA− close to the core of a vector

defect are written as R±srd=sR±` / r0dr, where R±`

=limr→` R±srd. The same relation holds for one of the com-
ponents of a scalar defect. The linear relation between am-
plitude and distancer, whenr .0, holds when the topologi-
cal charge is ±1f22g. We consider the quantityr0 as a
measure of the defect size.

In summary, the parameters that characterize a defect are
the chargen±, sizer0 and frequencyv± sor asymptotic wave
numberk±d.

One of the reasons to study in detail the defects of the
VCGL equation is that this kind of localized structure often
organizes the geometry and dynamics of the host medium, so
that they become “building blocks” of regular patterns and of
spatiotemporal chaosf2,23g. Figure 1 represents numerical
integrationf24g of Eq. s1d and shows an example where the
whole system dynamics is governed by one defect.

It is clear that a detailed study of the defect parameters
sr0, v±, or k±d as functions of the parameters of Eq.s1d sa, b,
and gd would be useful for a better understanding of the
dynamics. In order to simplify the analysis, we will restrict
the study to the casea=0, which, in an optical context,
means that we are neglecting the effects of diffraction. This
restriction can be done without loss of generality, at least
when both components of the field have the same frequency,
since the caseaÞ0 can be recovered with an appropriate
change of variables, which is a generalization to the vectorial
case of the change of variables proposed in Ref.f22g.

Taking a=0, when we introduce the ansatzs2d in Eq. s1d
we obtain the following real equations:

R±9 = −
R±8

r
+ Sc±8

2 +
n±

2

r2 + R±
2 + gR7

2 − 1DR±,

c±9 = −
c±8

r
−

2c±8R±8

R±
+ bsk±

2 + R±
2 + gR7

2 − 1d. s3d

Numerical integration of Eq.s3d is a two point boundary
problem that can be solved using a relaxation methodf25g.
In the next sections we present our results of the frequency
and size of different kinds of defects as functions of param-
etersb andg.

III. FREQUENCY AND COMPETITION AMONG DEFECTS

In Fig. 2, the dashed line shows the frequency as function
of b for a vector defect; in an optical context,b represents
the detuning, so, this result means thatv increases as the
difference between atomic and cavity frequency increases.

The results for vector defects do not depend on neitherg
sthis parameter can be eliminated with a scaling of the am-
plitude f20gd nor the type of the vector defectsequal or op-
posite chargesd, and they are in agreement with the results of
Hagan for a scalar defectf22g. Nevertheless, not every com-
bination of parametersb and g are allowed. Vector defects
become unstable wheng approaches 1f20g. Two mecha-
nisms by which this process occurs have been identified:
“domain instability” sthe vector defect is annihilated by an
external scalar defectd and “core instability”sthe vector de-
fect splits in two scalar defectsd. For small values ofugu,
there are theoretical limitations for the stability of vector
defects. In Ref.f26g it is demonstrated, via a perturbative
analysis for smallugu, that two scalar defects in different
components attract each other ifb.0.52 andg.0, or b
,0.52 andg,0.

For −1,g,1, scalar defects can be symmetric or asym-
metric. For a symmetric scalar defect, both components have
the same amplitude far from the core, so, the background is
linearly polarized. On the other hand, an asymmetric scalar
defect has an elliptically polarized background; this is the
case when scalar defects are in only one of the components
of the field.

In Fig. 2, the frequencyvs of a symmetric defect is plot-
ted againstb for different values ofg sthe results for an
asymmetric defect are qualitatively the samed. In this plot,
we can compare the frequencyvs with the frequencyv0 of a
vector defect, which is the one that corresponds tog=0. We
can see that, ifg.0, thenv0.vs, and, if g,0, thenv0
,vs. It is known f27g that when a competition among wave
emitting centers takes place, the oscillator with greater fre-

FIG. 1. Sum of the phases ofA+ andA−. From left to right, the
sequence corresponds to times 100, 700, 1300, and 1900. The initial
condition is random. The global phase of the vector defect, which is
approximately in the center, appears as a target pattern that grows
with time. Parameters:a=0, b=1.29,g=0.1.

FIG. 2. Frequencyvs of a symmetric scalar defect againstb for
different values ofg. From top to bottom,g=−0.9, −0.5, −0.1, 0,
0.1, 0.5, and 0.9. The dashed line corresponds to the frequencyv0

of a vector defect.
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quency suppresses the waves produced by the others. There-
fore, the previous results imply that ifg.0 the vector defect
will dominate the dynamics at long times, while, ifg,0, the
scalar defects will be dominant. Figure 1 shows a time se-
quence of a system withg=0.1, starting from random initial
conditions. A vector defect is spontaneously formed at the
center of the system. The size of the defect domain grows
with time, displacing the rest of the defects, which are most
of them of scalar type. The vector defect imposes its fre-
quency on the system. Forg,0, although isolated vector
defects can be stable ifb,0.52, starting from random initial
conditions they cannot last because they cannot develop a
domain as in Fig. 1, and they are not isolated from scalar
defects that annihilate one of the components. This predic-
tion was checked with numerical integration of Eq.s1d.

IV. SIZE OF THE DEFECTS

The analysis of the size of the defectsr0 could be useful
to compare it with the size of a real system in order to know
if the defects are actually observable.

The size of a vector defect remains between 1.7 and 1.8
ssee Ref.f13g to recover space unitsd for every value of
parameterb. Much more important variations ofr0 appear
for scalar defects asg is varied.

In fact, r0 of scalar defects diverges forg→1 f16g. Let us
considerg close to 1, so thatg=1−dg with udgu!1. We
introduce a parametere, and change the space variabler
=x/e, so thatR±8,e andR±9,e 2. Since the size of the defect
is r0=R+` /R+8s0d sscalar defect in the “1” componentd, then
r0,1/e. We can find a relation betweene anddg using Eq.
s3d, we get 1−R7

2 −R±
2=Ose 2d /R7−R±

2dg. Combining both
equations, we have R+R−sR++R−ddg=Ose 2d. Since
R+R−sR++R−d=Os1d, thene,udgu1/2, and

r0 ,
1

u1 − gu1/2. s4d

For g.1, linearly or elliptically polarized states become
unstable with respect to circularly polarized states. Let us
consider a scalar defect in the right, or “1,” polarized phase
with n+= ±1 andn−=0. As described in Ref.f16g, for g.1,
it can be of two types: “repolarized core” defect or “punched
core” defect. In the repolarized core structure, the “2” com-
ponent takes nonzero values in the defect core region. On the
other hand, in the punched core structure, the “2” compo-
nent remains vanishing in the defect core region. Since the
“2” component remains zero for the punched core structure,
the defect is identical to those that appear in the scalar CGL
equation. The size, frequency, or wave number of this defect
does not depend ong. Anyway, punched core defects are not
allowed for every value ofg. Topological arguments dis-
cussed in Ref.f16g demonstrate that punched core defects
cannot exist forg slightly above 1. Numerically, we observe
this kind of defects forg.1.5. Therefore, wheng.1 Eq.
s4d holds for repolarized core defects.

Figure 3 shows the sizer0 of a symmetric scalar defect
and for a repolarized core defect againstu1−gu in log-log
scale. The numerical results confirms the slope −1/2 of Eq.
s4d. There are not important variations of the sizer0 with
parameterb.

V. CONCLUSIONS

We have numerically analyzed the different kinds of de-
fects of the VCGL equations1d. We have considered the size
of the defect core and frequency of the emitted spiral wave,
as the quantities that characterize a defect. We have analyzed
them as functions of the parameters of the VCGL equation:b
and g. The analysis is simplified by taking parametera=0.
When both components of the field have the same frequency,
the caseaÞ0 can be recovered with a change of variables.
For vector defectssfor −1,g,1d and punched core defect
sfor g.1d the situation is even simpler since the properties
of the defect do not depend ong, and they depend only onb.

The size of scalar defects forg,1 ssymmetric and asym-
metric defectsd and for g.1 srepolarized core defectd di-
verges asg approaches 1. This theoretical result is numeri-
cally confirmed.

We have identified competition processes among defects
where those with the greatest frequency imposes its wave
over the system.

In summary, we have described the main characteristics of
the defects in the VCGL equation via a thorough numerical
study in the whole parameter space. In addition to the basic
understanding of the dynamics in vector nonlinear media, the
analysis of this kind of localized structure could be useful for
information storage and processing.
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FIG. 3. Sizer0 againstu1−gu in log-log scale for a symmetric
scalar defectscontinuous line,b=0.1d and for a repolarized core
defect sdots, b=1.29d. The dashed line has slope −1/2. This nu-
merical result confirms Eq.s4d.
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