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Characterization of phase singularities in the vector complex Ginzburg-Landau equation
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The vector complex Ginzburg-Landau equation is an amplitude equation appropriate for describing insta-
bilities in oscillatory media when the order parameter is a vector fifdd example, laser light or two-
component Bose condensht# is known that this equation presents a variety of phase singularities or topo-
logical defects. We study the parameters that characterize the different kinds of defects and show that the
results are useful for a better understanding of the system dynamics.
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I. INTRODUCTION
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Spatially extended nonlinear dynamical systems presenta  dt
great variety of behaviors including pattern formation, self- (1)
organization, and spatiotemporal chdd$. Many of them
also display states with localized objects with some kind of The scalingA. — A, exp(—iBt) was used with respect to an-
particlelike behaviof2]. Complex patterns of nonlinear sys- other version used in, e.g., Refd5-20, in order to have a
tems can sometimes be understood in terms of these particlaenoscillating homogeneous solutipin the context of la-
like objects. sers,A, represent the circularly polarized right and left com-
Nonlinear optical cavities provide many examples of pat-ponents« represents the strength of diffractigBis related
terns with localized structures. They appear in the plando the frequency detuningy is the coupling parameter re-
transverse to light propagation and can take the form of delated to decay constants, aNd is the 2D transverse Laplac-
fects, vortices, or solitongright or dark. They have been ian. The definition of the equation parameters in terms of
observed or predicted in lasdi3], photorefractive materials physical quantities can be found in REL3].
[4], lasers or driven optical cavities with saturable absorbers The coupling parametey should satisfy the conditiory
[5], semiconductor$6], optical bistability[7], and second- >-1 for the system to converge to a finite solution. We will
order nonlinear optical oscillator8]. Usually, the math- consider that the condition 18>0 (Benjamin-Feir stabil-
ematical description of these optical systems is done in termisy criterion) is satisfied, which means that there are always
of a scalar field, since the polarization degree of freedom isome plane waves that are stable against long wavelength
considered to be fixed either by material anisotropies or byerturbations. The family of plane wave solutions has the
experimental arrangement. However, if the polarization ofform, A,=Q,e keT-est*¢0s) |f 4>1 the stable plane wave
the light is not fixed, the vector nature of the electromagneticolution is circularly polarized. If —-& y<<1, the stable plane
field leads to new and interesting phenomégéa wave solution is, in general, elliptically polarized, and, if
The complex Ginzburg-Landa€GL) equation is the ge- k,=k_=k, we have a linearly polarized soluti¢&0].
neric amplitude equation model that describes slow modula- Starting from random initial conditions, even if the con-
tions in the oscillations of spatially coupled oscillators closedition 1+aB8>0 is satisfied, the system usually does not
to a Hopf bifurcation1,10]. The vector complex Ginzburg- evolve to a plane wave due to the presence of phase singu-
Landau(VCGL) equation has been derived in a variety of larities or defects: points where the phase of the complex
contexts, e.g., in the interaction of counterpropagating waveseld, A, or A_ (or both, is not defined and the amplitude is
[11] or when the order parameter is of vectorial characterzero. A spiral wave develops around each defect that, far
such as the electric field in large aperture lagé®13. In  from the defect core, approaches a plane wave.
the appropriate range of parameters, the VCGL equation also Defects can be classified in two groups: vector and scalar
describes a two-component Bose condenfbdé defects. Vector defects are points where the two components,
Different kinds of defect§15-2Q are present in the two- A, and A_, vanish. Scalar defects are points at which only
dimensional2D) VCGL equation. In this paper we consider one of the two fieldsA, or A_, vanish. The following ansatz
guantities, such as size, frequency, or wave number of this used to describe the field around a defect in a stationary
wave emitted by the defect core, which characterize the difstate, in polar coordinates with the origin at the defect core,
ferent kinds of defects. We study the behavior of these quan- o _
tities as functions of the parameters of the equation. AL(r,0) = Ry(r)eneHvaNHiost, 2

where n, is the topological charge of the singularity that
necessarily takes integer values. Only defects with charges
n=+1 have been found in the scalar or vector Ginzburg-
The VCGL equation can be written as Landau equation. Defects with larger values|wfare un-
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FIG. 1. Sum of the phases &f. andA_. From left to right, the 1k ]
sequence corresponds to times 100, 700, 1300, and 1900. The initial
condition is random. The global phase of the vector defect, which is 0 z
: : 1 2 3 4 5
approximately in the center, appears as a target pattern that grows 8

with time. Parametersy=0, 8=1.29, y=0.1.

FIG. 2. Frequencws of a symmetric scalar defect agaiggtor
stable and detach in defects with smaller charf@efects different values ofy. From top to bottom;=-0.9, -0.5, -0.1, 0,
with |n|=2 have been reported for the vector Swift- 0.1, 0.5, and 0.9. The dashed line corresponds to the frequapicy
Hohenberg equatiofi21].) If y>1, vector defects are not of a vector defect.
topologically allowed, since the stable homogeneous states
are such that one of the two field components vanishes iNumerical integration of Eq(3) is a two point boundary
large areas, not just at points. problem that can be solved using a relaxation metf&&.

In Eq. (2), o, is the rotation frequency of the spiral wave. In the next sections we present our results of the frequency
Forr— o, y.(r)=k.r, where the spiral wave numbkr far  and size of different kinds of defects as functions of param-
from the defect core is the one that corresponds to a planeterss and v.
wave and is given bf’=w./(8-a).

The amplitudes oA, andA_ close to the core of a vector
defect are written asR.(r)=(R../ro)r, where R,
=lim,_.. R.(r). The same relation holds for one of the com- In Fig. 2, the dashed line shows the frequency as function
ponents of a scalar defect. The linear relation between anef 8 for a vector defect; in an optical contex@,represents
plitude and distance, whenr =0, holds when the topologi- the detuning, so, this result means thatincreases as the
cal charge is +1[22]. We consider the quantity, as a difference between atomic and cavity frequency increases.
measure of the defect size. The results for vector defects do not depend on neither

In summary, the parameters that characterize a defect aféhis parameter can be eliminated with a scaling of the am-
the chargen,, sizery and frequencyw, (or asymptotic wave plitude [20]) nor the type of the vector defe@equal or op-
numberk,). posite chargesand they are in agreement with the results of

One of the reasons to study in detail the defects of thédagan for a scalar defef22]. Nevertheless, not every com-
VCGL equation is that this kind of localized structure often bination of parameterg and y are allowed. Vector defects
organizes the geometry and dynamics of the host medium, dmecome unstable whem approaches 120]. Two mecha-
that they become “building blocks” of regular patterns and ofnisms by which this process occurs have been identified:
spatiotemporal chaog,23]. Figure 1 represents numerical “domain instability” (the vector defect is annihilated by an
integration[24] of Eq. (1) and shows an example where the external scalar defecand “core instability”(the vector de-
whole system dynamics is governed by one defect. fect splits in two scalar defegtsFor small values ofy],

It is clear that a detailed study of the defect parametershere are theoretical limitations for the stability of vector
(ro, w4, Ork,) as functions of the parameters of Etj) (o, 8,  defects. In Ref[26] it is demonstrated, via a perturbative
and y) would be useful for a better understanding of theanalysis for small/y|, that two scalar defects in different
dynamics. In order to simplify the analysis, we will restrict components attract each othergf>0.52 andy>0, or 8
the study to the case=0, which, in an optical context, <0.52 andy<O0.
means that we are neglecting the effects of diffraction. This For -1<y<1, scalar defects can be symmetric or asym-
restriction can be done without loss of generality, at leasmetric. For a symmetric scalar defect, both components have
when both components of the field have the same frequencihe same amplitude far from the core, so, the background is
since the caser# 0 can be recovered with an appropriate linearly polarized. On the other hand, an asymmetric scalar
change of variables, which is a generalization to the vectoriatlefect has an elliptically polarized background; this is the

IIl. FREQUENCY AND COMPETITION AMONG DEFECTS

case of the change of variables proposed in R case when scalar defects are in only one of the components
Taking «=0, when we introduce the ansd® in Eq. (1) of the field.
we obtain the following real equations: In Fig. 2, the frequencws of a symmetric defect is plot-

) ted againstB for different values ofy (the results for an
., R o NE 5 asymmetric defect are qualitatively the samia this plot,
Ri=- T * ("”i * 2 TR RE - 1) R., we can compare the frequeney with the frequencyw, of a
vector defect, which is the one that correspondg+®. We
, L can see that, ify>0, then wy> ws, and, if y<0, then wg
o= - Yo 20R BC + R+ yR2 — 1) (3 <o Itis known[27] that when a competition among wave
* r R, - - ' emitting centers takes place, the oscillator with greater fre-
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quency suppresses the waves produced by the others. There-
fore, the previous results imply thaty£> 0 the vector defect

will dominate the dynamics at long times, while ik 0, the
scalar defects will be dominant. Figure 1 shows a time se-
quence of a system with=0.1, starting from random initial
conditions. A vector defect is spontaneously formed at the . y
center of the system. The size of the defect domain grows '
with time, displacing the rest of the defects, which are most 0.0
of them of scalar type. The vector defect imposes its fre-

quency on the system. For<0, although isolated vector

defects can be stable #<0.52, starting from random initial FIG. 3. Sizery against|1-4] in log-log scale for a symmetric
conditions they cannot last because they cannot develop stalar defec{(continuous line,8=0.1) and for a repolarized core
domain as in Fig. 1, and they are not isolated from scalatefect(dots, 8=1.29. The dashed line has slope —1/2. This nu-
defects that annihilate one of the components. This predionerical result confirms Eq4).

tion was checked with numerical integration of Eij).

In(rg)

225 —2.0 —16 —1.0 —0.6 0.0
In|1-v]

Figure 3 shows the sizg, of a symmetric scalar defect
and for a repolarized core defect agaifist-y| in log-log
IV. SIZE OF THE DEFECTS scale. The numerical results confirms the slope -1/2 of Eq.
(4). There are not important variations of the sizewith
The analysis of the size of the defectscould be useful parametels.
to compare it with the size of a real system in order to know
if the defects are actually observable.
The size of a vector defect remains between 1.7 and 1.8
(see Ref.[13] to recover space unjtfor every value of
parameterB. Much more important variations af, appear We have numerically analyzed the different kinds of de-
for scalar defects ag is varied. fects of the VCGL equatiofil). We have considered the size
In fact, rq of scalar defects diverges for— 1 [16]. Let us  of the defect core and frequency of the emitted spiral wave,
considery close to 1, so thaty=1-5y with |5y]<1. We as the quantities that characterize a defect. We have analyzed
introduce a parametes, and change the space varialle them as functions of the parameters of the VCGL equajion:
=x/ €, so thatR, ~ € andR] ~ € 2. Since the size of the defect and y. The analysis is simplified by taking parametes0.
is ro=R.../R;(0) (scalar defect in the+” component, then  When both components of the field have the same frequency,
ro~1/e. We can find a relation betweenand 8y using Eq.  the casex# 0 can be recovered with a change of variables.
(3), we get 1-R2-R2=0(e?)/R;—-R28y. Combining both  For vector defectsfor —1< y<1) and punched core defect
equations, we have R,R.(R,+R.)dy=0(e?). Since (for y>1) the situation is even simpler since the properties
R.R(R,+R.)=0(1), thene~|5y*? and of the defect do not depend an and they depend only g8
The size of scalar defects fer<1 (symmetric and asym-
metric defects and for y>1 (repolarized core defeci-
verges asy approaches 1. This theoretical result is numeri-
1 cally confirmed.
~ m (4) We have identified competition processes among defects
where those with the greatest frequency imposes its wave
For y>1, linearly or elliptically polarized states become over the system.
unstable with respect to circularly polarized states. Let us In summary, we have described the main characteristics of
consider a scalar defect in the right, of,” polarized phase the defects in the VCGL equation via a thorough numerical
with n,=+1 andn_=0. As described in Ref16], for y>1,  study in the whole parameter space. In addition to the basic
it can be of two types: “repolarized core” defect or “punchedunderstanding of the dynamics in vector nonlinear media, the
core” defect. In the repolarized core structure, the tom-  analysis of this kind of localized structure could be useful for
ponent takes nonzero values in the defect core region. On thisformation storage and processing.
other hand, in the punched core structure, th€ tompo-
nent remains vanishing in the defect core region. Since the
“—" component remains zero for the punched core structure, ACKNOWLEDGMENTS
the defect is identical to those that appear in the scalar CGL
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V. CONCLUSIONS
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